
JOURNAL OF MATERIALS SCIENCE 31 (1996) 1915-1923 

Viscoelastic behaviour of symmetrical three 
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Using the theory of linear elasticity, a solution to the torsion problem of the symmetrical 
three-layer beam is proposed. In this way, the complex torsional stiffness has been 
determined. The predicted values are then compared with experimental results obtained by 
mechanical spectroscopy operated in the torsion mode. The shifts in temperature, observed 
between the loss factor maximum exhibited by the polymers and the sandwiches, 
respectively, are mainly attributed to a mechanical coupling effect instead of an interphase 
effect. 

1. Introduction 
Symmetrical sandwich steel/polymer/steel sheets have 
been developed to reduce noise and vibrations "in 
structures. Thanks to the main relaxation phenom- 
enon associated with the glass transition of polymer 
mater!als, high loss factors together with significant 
stiffnesses are expected. Mechanical spectroscopy op- 
erated in sinusoidal torsional stress is used to charac- 
terize the damping factor. The study compares mech- 
anical relaxations exhibited on one hand, by the sand- 
wich and on the other hand, by the polymeric part 
alone. Experiments show that the shape of the loss 
factor peak is affected and its maximum is shifted in 
temperature from the polymer to the sandwich. 

In order to estimate the interface or interphase 
effects on this temperature shift and more generally 
the polymer microstructure influence, it is necessary to 
study first the mechanical coupling in the sandwich 
assuming perfect interfaces. The aim of this work is to 
predict the sandwich behaviour from the character- 
istics of its components measured separately. A theor- 
etical determination of the symmetrical sandwich 
complex stiffness has been developed. This calculation 
is based on the resolution of the elastic torsion prob- 
lem. Then theoretical and experimental results are 
compared and discussed. 

2. Theoretical determination of 
viscoelastic characteristics of 
symmetrical sandwiches 

2.1. The elastic torsion problem 
The problem of the torsion of beams consisting of 
isotropic materials is presented below. 

2. 1. 1. G e n e r a l  e q u a t i o n s  

Let the coordinate system be as depicted on Fig. 1. Oz 
is the twisting axis while Ox and Oy define the cross- 
sections. All materials of the bar are assumed homo- 
geneous and isotropic. Basically, the cross-section S of 
the bar consists of several regions So, $1, $2 . . . .  ,Sin 
corresponding to different materials. 

The boundary conditions of the torsion problem are 
considered, assuming, as for the case of a homogene- 
ous bar, that cross-sections twist and warp. This sup- 
position leads to the expressions for the displacement 
components: 

u = - 7 z y ,  v = 7zx,  w = 7q)(x,y) 

where y is the relative twist (i.e. the angle of the torsion 
per unit length) and r the torsion function used to 
define the warping. 

Hooke's law relate the stress components in each 
region Si corresponding to the displacements: 

cyxz = P i Y \ ~ x  - y ' cyyz = g iY\~y  + x  

where Pz and s are the shear modulus and the torsion 
function, respectively, in the region Si. 

Far below the resonance frequencies, it is easily seen 
that the substitution of these expressions in equilib- 
rium equations leads to the Laplace equation, as in the 
case of homogeneous bars: 

Aq) = 0 

Thus, in the present case, the function q~ must also 
be harmonic in each region Sz. The difference from the 
case of the homogeneous bar manifests only in the 
boundary conditions. These conditions express that: 

(i) the external surface of the beam is free from 
external forces, 
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Figure 1 Torsion of a compound beam. The cross-section is a set of 
$1 ... S, regions of different materials in the surrounding region So. 
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Figure 2 Torsion of a sandwich. The cross-section is a set of $1 and 
$2 regions of the materials 1 and 2. Oy is a symmetry axis in the 
cross-section. 

(ii) the forces acting on the elements of the surface 
separating the different materials are equal in magni- 
tude and opposite in direction, 

(iii) the displacements u, v, w remain continuous 
across the interfaces, which are assumed to be perfect. 

The force moment M is obtained by calculating the 
moment resulting from all the forces with respect to 
the Oz axis: 

= fs  ( -  ycYxz + x%~)dS M 

resulting in: 

M = T ~" JSi "~gi X 2 _}_ y2 d- X ~ y  -- y dx dy 

2. 1.2. Tors ion  o f  a s a n d w i c h  
Consider the symmetrical sandwich (Fig. 2). Its ex- 
ternal dimensions are equal to 2b and 2c and the width 
of the central material section is equal to 2a. $1 and $2 
are the regions occupied by the two materials. Let 
their shear moduli be gl and g2, respectively. The Oz 
axis is the twist axis as quoted above and Ox, Oy axes 
are chosen with respect to the cross-section symmet- 
ries. The functions q~l and 92 represent the torsion 
function q~ in S~ and $2 regions, respectively. 

In order to solve this problem, it is convenient to 
split the cross-section along the symmetry axis Oy. 
The result thus obtained on the two-layer material is 
simply half of the sandwich stiffness. A torsion func- 
tion form developed for the torsion of two-layer be- 
ams [1] can be used. A solution procedure for the 
functions % and q%and then from these the complex 
rigidity is presented in the appendix. 
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2.2. Viscoelastic characteristics of a sandwich 
The shear moduli introduced in the solution presented 
above are implicitly real quantities. 

Assuming the correspondence principle [2], the 
complex stiffness of a mechanical system can be de- 
duced from the calculation of the stiffness supposing 
first each component elastic, and then replacing each 
modulus with its complex expression. The viscoelastic 
properties thus calculated are usually represented by 
the real part of the complex stiffness and the loss 
factor, i.e. the ratio of imaginary part to real compon- 
ent of this stiffness. 

From the expression presented in the appendix, 
a computer program has been developed, thus allow- 
ing numerical simulations of the complex rigidity as 
a function of temperature and geometrical parameters 
for the sandwich structure. 

3. Experimental and theoretical results 
3.1. Materials and methods 
The stainless steel foils used were supplied by U G INE 
S.A., France. The thickness was 200 ~tm and the sur- 
face state (bright anneal) was obtained by annealing 
the stainless steel at 850 ~ in a non-oxidizing N2/H2 
atmosphere. Before processing, the foils were cleaned 
with acetone and cut into 300 x 300 mm 2 pieces. 

Two different polymers were considered in this 
work. 

The first polymer used was an ethylene-vinyl acet- 
ate copolymer (EVA). It was a 100 ~tm thick film which 
was placed between two stainless steel foils and the 
sandwich was pressed with heater platens under 
a pressure of 0.1 MPa at 200 ~ for 10 min. 



A polyacrylic (PAc) was used as the second poly- 
mer. It is a 110 gm thick film which was used as an 
adhesive. 

The specimens suitable for mechanical spectroscopy 
testing were cut from 300 x 300 mm 2 sandwich pieces, 
and the dimensions were about 70 x 7 mm 2. 

Dynamic mechanical spectroscopy was performed 
in torsion by means of two home made instruments. 
A high resolution set-up [3] was used to investigate 
unsupported polymeric thin films. Sandwiches a n d  
steel foils were characterized by a more classical spec- 
trometer [4]. 

3.2 .  P r e l i m i n a r y  r e m a r k  
The quantity that is measured through mechanical 
spectroscopy is the overall torsional stiffness of the 
specimen. In the case of isotropic and homogeneous 
bars, this stiffness is the product of the shear modulus 
and a quantity Fs called the shape factor, which only 
depends on sample dimensions and geometry. For  the 
symmetrical sandwiches used (Fig. 2), Fs = ~ cb 3. 

In the scope of this work, composite structures are 
considered. It is then convenient to define the appar- 
ent shear modulus as the shear modulus of an homo- 
geneous and isotropic equivalent sample that would 
present the same stiffness and the same external di- 
mensions as the sample under test. 

3.3. Experimental results 
The measurements have been carried out for separate 
materials and composites, namely: 

--stainless steel foils (Fig. 3) 

EVA and a stainless steel/EVA/stainless steel 
foils sandwich (Figs 4 and 5), thus enabling the predic- 
tion of the metal/polymer/metal configuration behav- 
iour. 

- - P A c  film and a PAc/stainless steel foils/PAc 
sandwich (Figs 6 and 7), in order to study polymer/ 
metal/polymer configuration. 

The viscoelastic characteristics of the metallic foils 
are shown in Fig. 3. The loss factor (which is defined as 
G"/G' = tan q~) remains nearly constant and equal to 
2 x 10 -3. The shear modulus is equal to 59 G Pa  at 
2 9 5 K  and its temperature coefficient is about 
- 0.025 G P a  K -  1. 

The viscoelastic characteristics of the polymers are 
depicted on Figs 4 and 6 and are to be compared to 
the corresponding characteristics of the sandwiches 
(Figs 5 and 7). 

Obviously, from the polymer to the sandwichl the 
loss factor decreases, and the real part of the sandwich 
apparent modulus is lower than the real part of the 
stainless steel modulus, as expected. Less obvious are 
the shifts observed between the mechanical relax- 
ations of polymers and mechanical relaxations of 
sandwiches. For  the stainless steel/EVA/stainless steel 
foils, the shift is + 10 K, and for the other configura- 
tion (PAc/stainless steel/PAc) the shift reaches 
- 3 2 K .  

The experimental results of Fig. 3 (stainless steel) 
and Fig. 4 (EVA polymer) are computed according to 
the mechanical coupling model prev ious lyde ter -  
mined, and can be compared with the data directly 
obtained with the corresponding metal/polymer/ 
metal sandwich. This comparison is shown in Figs 
8 and 9 for the loss factor and the real part of the 
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Figure 3 Isochronal (at a fixed frequency, f = 1 Hz) variation of the loss factor tan �9 and the real part of the shear modulus G' of the stainless 
steel foils against temperature. 
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Figure 4 Isochronal (at a fixed frequency, f = 1 Hz) variation of the loss factor tan s and the real part of shear modulus G' of EVA polymer 
film with temperature. The maximum of the tans value, associated with the glass transition mechanical relaxation, occurs at T = 253 K. 
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Figure 5 Isochronal (at a fixed frequency, f =  1 Hz) variation of the loss factor tans and the real part of apparent shear modulus G'app of 
stainless steel/EVA/stainless steel sandwich with temperature. The maximum of the tan s value occurs at T = 263 K. 

apparen t  shear modulus ,  respectively. The polymer/  
meta l /polymer  configurat ion is also studied according 
to the same frame of analysis, bu t  for PAc and  
PAc/stainless steel/PAc structure. The compar i son  be- 
tween experimental  and  calculated data  are displayed 
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in Figs 10 and  11 for the loss factor and  the real par t  of 
the apparen t  shear modulus,  respectively. 

It is easily seen that  the law predicts the shear 
modulus  and  the loss factor of sandwiches from their 
components  characteristics for the two different 
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Figure 6 Isochronal (at a fixed frequency, f = 1 Hz) variation of the loss factor tan (I) and the real part of shear modulus G' of PAc polymer 
film with temperature. The maximum of the tan q~ value, associated with the glass transition mechanical relaxation occurs, at T = 267 K. 
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Figure 7 Isochronal (at a fixed frequency, f =  1 Hz) variation of the loss factor tang9 and the real part of apparent shear modulus G',pp of 
PAc/stainless steel/PAc sandwich with temperature. The maximum of the tan (I) value occurs at T = 235 K. 

c o n f i g u r a t i o n s  m a d e  of  t h e  t w o  d i f f e r e n t  p o l y m e r s  

u n d e r  c o n s i d e r a t i o n .  Spec ia l ly ,  t he  sh i f t  of  t a n ~  

m a x i m a  a re  wel l  r e p r o d u c e d .  T h e  c o m p a r i s o n  s h o u l d  

p r o b a b l y  b e  i m p r o v e d  if  m o d u l u s  w e r e  m e a s u r e d  

w i t h  a n  a c c u r a c y  b e t t e r  t h a n  1 5 % .  N e v e r t h e l e s s  t h e  

e x p e r i m e n t a l  d e t e r m i n a t i o n  of  s h e a r  m o d u l u s  va r i -  

a t i o n s ,  as  wel l  as t he  loss  f ac to r ,  a re  m o r e  a c c u r a t e  

(3%). 
T h e  l i m i t a t i o n  of  t h e  c o m p a r i s o n  of  e x p e r i m e n t a l  

a n d  c a l c u l a t e d  d a t a  a r i ses  f i rs t  f r o m  the  v i o l a t i o n  o f  
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Figure 8 Comparison of experimental loss factor results for (i) stainless steel/EVA/stainless steel sandwich and (ii) calculated values, resulting 
fiom the mechanical coupling model and experimental behaviours of the stainless steel and the EVA polymer (Figs 3 and 4, respectively). Key: 
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Figure 9 Comparison of experimental real apparent shear modulus results for (i) stainless steel/EVA/stainless steel sandwich and (ii) 
calculated values, resulting from the mechanical coupling model and experimental behaviours of the stainless steel and the EVA polymer (Figs 
3 and 4, respectively). G;ppo is the real apparent shear modulus value measured or predicted at T = 200 K (G;p;0 = 52.7 GPa and the 
calculation leads to G'ap; 0 = 48.7 GPa). Key: + experimental data, (> calculations. 
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Figure 10 Comparison of experimental loss factor results for (i) PAc/stainless steet/PAc sandwich and (ii) calculated values, resulting from the 
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Figure 1 l Comparison of experimental real apparent shear modulus results for (i) PAc/stainless steel/PAc sandwich an d (ii) calculated values, 
resulting from the mechanical coupling model and experimental behaviours of the stainless steel and the PAc polymer (Figs 3 and 6, 
respectively). G'appo is the real apparent shear modulus value measured or predicted at T = 200 K (G;pp ~ = 7.36 GPa and the calculation leads 
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the St-Venant principle near the jaws. In the polymer/ 
metal/polymer configuration, we noticed that the 
creep of the polymer near the jaws induces a large 
departure from the calculated value. Thus, it is worth- 
while to notice that in the case of the PAc/stainless 
steel/PAc sandwich actually tested, the polymer ma- 
terial covers only the useful part of the sandwich (there 
is no polymer in the jaws). In the case of metal/ 
polymer/metal structure, this creep effect could be 
responsible for the difference observed above 300 K 
between calculated and experimental results in Figs 8 
and 9. 

The second limitation of the comparison, results 
from the non-exact superimposition of the twist axis 
and the sample symmetry axis, although it is 
assumed that both are equivalent in the theoretical 
section. 

In the literature, interpretations of change of loss 
modulus peak or shear modulus of sandwich struc- 
tures in terms of interphases or surface dislocations 
effects are often found [5, 6]. The coupling analysis, as 
it is shown here (in the case of the torsion stress 
applied to sandwiches), is actually essential to under- 
stand the mechanical relaxations of sandwiches linked 
to polymer mechanical relaxations. 

4. Conclusion 
The viscoelastic behaviour of symmetrical three-layer 
beams has been analysed. The calculated values fall in 
good agreement with the experimental data assuming 
perfect interfaces between components. 

The major conclusion is that, at least for the speci- 
mens studied here, the shifts observed between the 
mechanical relaxations of the unsupported polymers 
and the sandwiches are mainly attributed to a mech- 
anical coupling effect, instead of an interphase effect, 
as often claimed in the literature. 
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Appendix 
The harmonic functions qh and q)2 will be determined 
in the following forms: 

(p l ( x ,  y)  = 8 l ( x ,  y)  - x y  

q%(x, y) = 82(x,  y) - x y  

where: 

+co 

81(x,y) = ~ A12,+1 sinhmxsinmy 
n=O 

+oo 

~2 (X, y) = 2 (A 22, + 1 sinhmx + B 2 + 1 coshmx) sinmy 
. = 0  

(2n + 1)= 
m - -  

2c 
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It is immediately seen that the boundary conditions 
are as follows: 

(i) ~ x  - 2y  (x = b) 

~81 ~8z 
- 0, = 0 (y = c ,y  = - c )  

~y Oy 

~ 1  ~ 2  
(ii) g a ~ -  x gz  ~ x  - 2 y ( g l  - g2) 

(x = a, x - a) 

(iii) 81 = 82 (x = a) 

In order to satisfy these boundary conditions, it will be 
remembered that in the interval ( - c, + c) the func- 
tion 2y may be expressed as a series expansion: 

+co 

2y = ~ mA2.+ l sinmy 
n =0  

where: 

(2n + 1)~ 
m - -  

2c 

A2,+1 = 4 c  2 (2-s + ~ 3  

This series is a Fourier series for the functionfdefined 
as follows in the interval ( - 2c, + 2c): 

f = 2y in the interval ( -  c, + c) 

f = 4c - 2y in the interval (c, 2c) 

f = - 4c + 2y in the interval ( -  c, - 2c) 

The boundary conditions may be written as follows: 

(i) A 2 2 2.+lCOShmb + B2.+lsinhmb = A2.+1 

(ii) 1 2 
- -  gzA 2 n  + 1 [~I A 2. + ~ coshma coshma 

- -  g 2 B 2 n + l  sinhma = A2n+a(gl -- ~[2) 

(iii) 1 Az,+ 1 sinhma - Az2,+ 1 sinhma 

- BZ,+lCOShma = 0 

Solving the three preceding equations with respect to 
A2.+1,A22n+l the quantities 1 and 2 B:,+I one obtains 

the torsion function % i.e. the solution of the torsion 
problem: 

( p l ( x , y )  = ~ ( x , y )  - x y  

q~2(x, y) = ~2(x,  y) - x y  

where: 

--co 

= A 2n + 1 sinhmx sinmy 
n = 0  

+co 

82(x, y) = ~ (A2,+1 sinhmx + B2n+lCOShmx)sinmy 
. = 0  

(2n + 1)re 
Yn - -  

2c 

A~.+I = [g2 + (~t2 - gx)(sinhmasinhmb 

- coshma coshmb)] A 
2 A 2n+ 1 [~t l  c o s h 2 m a  - ~t2 sinh 2ma 



AV (~2 -- gt)s inhmasinhmb]A 

2 B2n+ 1 [-(gl - ~t2) sinhma(coshmb - coshma)]A 

with: 

A = A2n+ I [coshma sinhma sinhmb(g2 - -  [-I 1) 

+ coshmb(lil cosh 2ma - -  ~ 2  sinh2ma)]- i 

(2n + 1)n 
m --  

2c 

The torsion moment M in this case has the form: 

fs ( 89a 891'~ M _ 2 gi x 2 + yl + X-~y- y~7) dxdy 
7 

IS ( 8(P2 8(P2~ + 2 2 g2 x2  ~- y2 § X--~--y -- y ~-x)dx dy 

that yields the torsional stiffness expressed as a series: 

M 8 

7 3 
c 3 [ a g l  -}- g2 (b  - a ) ]  

+ ~ 4 ( . = o  m - 1)nA12n+l(aC~ 2 sinhma) gl 
m 

+ ( - -  1)"A~.+l[(bcoshmb -- acoshma) 
t l =  

2 
m 

- -- (sinhmb - sinhma)] ~2 

+ +o~ 4 (  _ 1)"B~.+l[(bsinhmb - asinhma) 
n=0 m 

2 
m 

- -- (coshmb - coshma)] ~2 

The solution of the torsion problem of isotropic 
rectangular bar [7], could be obtained taking a = b or 
gl = g2, in the preceding equations. 

The numerical calculation of the complex torsional 
stiffness can be carried out introducing the complex 
shear moduli ~t~' and g* separately measured by 
mechanical spectroscopy. 
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